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We investigate the relation between backbone and side-chain ordering in a small protein. For this
purpose, we have performed multicanonical simulations of the villin headpiece subdomain HP-36,
an often used toy model in protein studies. Concepts of circular statistics are introduced to analyze
side-chain fluctuations. In contrast to earlier studies on homopolypeptides �Wei et al., J. Phys.
Chem. B 111, 4244 �2007��, we do not find collective effects leading to a separate transition. Rather,
side-chain ordering is spread over a wide temperature range. Our results indicate a thermal hierarchy
of ordering events, with side-chain ordering appearing at temperatures below the helix-coil
transition but above the folding transition. We conjecture that this thermal hierarchy reflects an
underlying temporal order, and that side-chain ordering facilitates the search for the correct
backbone topology. © 2008 American Institute of Physics. �DOI: 10.1063/1.2819679�

I. INTRODUCTION

The process by which a protein folds into its biologically
active state cannot be traced in all details solely by experi-
ments. Fortunately, modern simulation techniques have
opened another window, often leading to a new insight into
the dynamics and thermodynamics of folding.1–6 Generalized
ensemble techniques7 such as parallel tempering8–10 or mul-
ticanonical sampling,11,12 first introduced to protein science
in Ref. 13, have made it possible to study the folding of
small proteins �with up to �50 residues14� in silico. Of par-
ticular interests is whether there are different distinct transi-
tions in the folding process and what their thermal order and
relation are.

An example is the role of side-chain ordering. In recent
studies on homopolymers,15,16 we found for certain amino
acids a decoupling of backbone and side-chain ordering. The
ordering did not depend on the details of the environment,
i.e., whether the molecules were in gas phase or solvent, but
solely on the particular side groups. It exhibited a transition-
like character, marked by an accompanying peak in the spe-
cific heat. In the present work, we extend this study to pro-
teins, i.e., heteropolymers of amino acids.

Our test protein is the villin headpiece subdomain HP-36
with which we are familiar from earlier works.17–19 This
molecule has raised considerable interest in computational
biology20,21 as it is one of the smallest proteins �596 atoms�
with well-defined secondary and tertiary structures22 but at
the same time still accessible to simulations.23 Its structure
was resolved by NMR analysis and is shown in Fig. 1 as it is
available in the Protein Data Bank24 �PDB� �PDB code 1vii�.
We use multicanonical sampling to study the thermal behav-
ior of the protein in aqueous solvent over a wide range of
temperatures from one single simulation. Such an approach

is well suited to overcome the problem of “slowness” of
side-chain ordering observed in canonical simulations.26,27

We observe that side-chain ordering occurs over a wide
range of temperatures below the helix-coil transition. Al-
though we do not find the collective effects leading to a
separate side-chain ordering transition that were observed for
homopolymers,15,16 this result indicates that secondary struc-
ture formation is a necessary precursor for side-chain order-
ing. On the other hand, side-chain ordering occurs at higher
temperatures than those at which the protein backbone as-
sumes its native fold. We conjecture that HP-36 folds in a
multistep process, with side-chain ordering facilitating the
search for the correct backbone topology.

a�Electronic mail: hansmann@mtu.edu. FIG. 1. �Color� Structure of HP-36 �picture was obtained by VMD �Ref. 25��.
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II. METHODS

Our simulations utilize the ECEPP/2 force field28 as
implemented in the 2005 version of the program package
SMMP.29,30 Here, the interactions between the atoms of the
protein are approximated by a sum EECEPP/2 consisting of
electrostatic energy EC, a Lennard-Jones term ELJ, hydrogen-
bonding term EHB, and a torsion energy ETor,

EECEPP/2 = EC + ELJ + EHB + ETor

= �
�i,j�

332qiqj

�rij
+ �

�i,j�
�Aij

rij
12 −

Bij

rij
6 �

+ �
�i,j�

�Cij

rij
12 −

Dij

rij
10� + �

l

Ul�1 ± cos�nl�l�� , �1�

where rij is the distance between the atoms i and j, �l is the
lth torsion angle, and energies are measured in kcal/mol. The
protein-solvent interactions are approximated by a solvent
accessible surface term,

Esolv = �
i

�iAi. �2�

The sum is over the solvent accessible areas Ai of all atoms
i weighted by solvation parameters �i, as determined in Ref.
31, a common choice when the ECEPP/2 force field is uti-
lized. Our previous experiences19,32 have shown that Esolv

reproduces the effects of protein-water interaction qualita-
tively correct. However, the temperature scale is often dis-
torted, leading, for instance, to transitions at temperatures
where water would be vaporized in nature. This problem can
be remedied, however, by renormalization of the temperature
scale upon comparison with experiments.

The above defined energy function leads to a landscape
that is characterized by a multitude of minima separated by
high barriers. As the probability to cross an energy barrier of
height �E is given by exp�−�E /kBT�, kB being the Boltz-
mann constant, it follows that extremely long runs are nec-
essary to obtain sufficient statistics in regular canonical
simulations at low temperatures. Hence, in order to enhance
sampling, we rely on the multicanonical approach,11,12 as de-
scribed in Ref. 13. Here, configurations are weighted with a
noncanonical term wMU�E�, usually determined iteratively to
optimize certain properties of the simulation. Thermody-
namic averages of an observable 	O
 at temperature T are
obtained by reweighting,33

	O
�T� =
� dxO�x�e−E�x�/kBT/wMU�E�x��

� dxe−E�x�/kBT/wMU�E�x��
, �3�

where x counts the configurations of the system.
Most often, the multicanonical weight is determined

such that the probability distribution obeys

PMU�E� � n�E�wMU�E� � const, �4�

where n�E� is the spectral density of the system. However, in
our implementation, we do not require a constant histogram
but that the number of round trips nrt between two preset
low and high energy values Elow and Ehigh is maximal. Ehigh

is an energy value typical for an disordered high temperature
state �in our example, Ehigh=−133.5 kcal /mol�, while Elow

=−357 kcal /mol was chosen to correspond to typical low-
energy states as determined by us in preliminary studies.
Obviously, the number of round trips nrt between the lowest
and highest temperatures, Elow and Ehigh, respectively, is a
lower bound for the statistically independent visits at the
low-energy states and, therefore, a good measure for the ef-
ficiency of the simulation. For this reason, it is desirable to
maximize the number of round trips by optimizing wMU�E�.
This can be achieved in a systematic way by the feedback
algorithm described in Refs. 34 and 35. The resulting
weights are given as supplemental material.

A simulation of 5�106 Monte Carlo sweeps �each con-
sisting of 217 Metropolis steps that try to update all 217
dihedral angles of the molecule once� leads to 35 tunneling
events, i.e., at least 35 independent configurations with ener-
gies smaller than −357 kcal /mol. Every ten sweeps, we mea-
sure the energy E with its respective contributions from Eq.
�1� and from the protein-solvent interaction energy Esolv.
Other quantities measured are the radius of gyration Rgy as a
measure of the geometrical size and the number of helical
residues nH, i.e., residues where the pair of dihedral angles
��, �� takes values in the range of �−70° ±30°,
−37° ±30°�.36 Also, we monitor the root mean square devia-
tion �RMSD� of various subsets of heavy atoms �backbone,
side chain, and all� from the PDB structure.

Finally, all the 217 dihedral angles are recorded for later
analysis of their fluctuations and correlations. As the statisti-
cal analysis of dihedral angles has subtle pitfalls, we present
and justify our approach in the Appendix.

III. RESULTS AND DISCUSSIONS

Multicanonical simulations allow the determination of
thermodynamic quantities over a wide range of temperatures.
The thermal evolution of the specific heat, for example,

C�T� =
d

dT
E = kB	2�	E2
 − 	E
2� , �5�

provides information about the temperatures where the pro-
tein changes its state. In earlier investigations15,16 of ho-
mopolymers, we observed two separate peaks in the specific
heat for particular amino acids, characterizing two well-
defined transitions. One peak was associated with a helix-
coil transition, i.e., the ordering of the protein backbone. The
second peak, at a much lower temperature, could be related
to an ordering of side chains. These results indicated a two-
step folding process upon lowering the temperature, starting
with backbone ordering followed by side-chain ordering.
How does the situation look like for a heteropolymer such as
HP-36?

The specific heat curve in Fig. 2 has only one marked
peak at T=505±8 K; however, it also exhibits a shoulder
around T=300 K. As for the homopolymers, the peak in the
specific heat can be related to a helix-coil transition. This
interpretation is supported by the inset where we display the
average number 	nH
 of residues that are part of an 
 helix as
a function of temperature. The steep increase in this quantity
at T=505 K is clearly correlated with the peak in the specific
heat.
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However, for HP-36, backbone ordering is more than
just the formation of secondary structure. The average radius
of gyration 	Rgy
, a measure for the compactness of a protein
configuration, as a function of temperature is displayed in
Fig. 3. It indicates that the backbone ordering occurs in more
than one step. Below T=505 K, most protein configurations
have a high helix propensity. Lowering the temperature fur-
ther, compact structures become finally more frequent than
extended configurations with equal or even higher helicity.
This two-step process in the backbone ordering can also be
seen in the inset which displays the fraction of configurations
with a RMSD smaller than 6 Å, i.e., those that should fall
within the free energy basin of the native structure.37 Final
compactification and transition to nativeness are, therefore,
concomitant processes. We believe that the shoulder in the
specific heat is correlated with that final backbone ordering
since it occurs close to the steepest parts of the decrease of
	Rgy
 and the increase of nativeness.

Hence, our results so far indicate a two-step process but
one that involves only the backbone. The first step, corre-
lated with a critical temperature T=505 K, involves the for-
mation of helical segments. In a second step, these arrange
themselves to compact and nativelike structures. The energy
gain here is much smaller and, therefore, this second order-
ing step is observed at lower temperatures only.

How does side-chain ordering fit into this picture? The

behavior of the specific heat does not give any indications of
a separate transition related to side-chain ordering. Such a
transition could still exist—albeit not associated with large
energy fluctuations. A quantity that describes side-chain or-
dering in a very general way is the average of the fluctua-
tions of dihedral angles. We have calculated this quantity as
described in the Appendix for buried side chains and com-
pared it with fluctuations of angles belonging to side chains
at the surface of the molecule. Both quantities are displayed
in Fig. 4 for all angles of a side chain and in the inset solely
for the �1 angle. For the buried residues, one observes a
single step ordering of the side chains. Immediately below
the helix-coil transition, the fluctuations decrease, indicating
that here, the formation of helical segments leads already to
some ordering of side chains. In the temperature range of
300–500 K, the fluctuations decrease further, albeit less dra-
matic. This range corresponds to the shoulder in the specific
heat and marks compactification and the formation of the
tertiary backbone structure. Residues at the surface exhibit a
much smaller decrease of fluctuations associated with the
formation of helical segments.

At higher temperatures, side-chain ordering is restricted
to residues in the interior of a protein. This is reasonable as
here, the side-chain positions are more constrained by the
geometry of the molecule. For this reason, we have focused
our further analysis on side-chain angles of residues in the
interior of the molecule. Figure 5 shows the fluctuations of
the �1 angle for the residues Phe7, Phe11, and Phe18. Fluctua-
tions of these angles decrease strongly over a small range of
temperatures below the formation of the helical segments.
We note that Phe7 exhibits ordering at a somewhat higher
temperature than Phe11 and Phe18.

The decrease in fluctuations is only loosely related to an
increase in correlations between the �1 angles of these three
residues �see Fig. 6�, where the data were determined as
described in the Appendix. Phe7 exhibits correlated fluctua-
tions with Phe11 already close to the helix-coil transition.
They persist and increase finally in the low temperature
phase. Phe7 and Phe18 exhibit �anti�correlations only below
350 K. The most dramatic change occurs with Phe11 and
Phe18: Their correlations start to occur around 450 K,

FIG. 2. �Color online� Specific heat as a function of temperature. The inset
displays the helicity as a function of temperature.

FIG. 3. �Color online� Radius of gyration as a function of temperature. The
inset shows the fraction of configurations with a backbone RMSD from the
PDB structure of less than 6 Å.

FIG. 4. �Color online� Averaged fluctuations �Eq. �A6�� of side-chain angles
from buried and surface side groups, respectively; the inset shows average
of only the �1 angle fluctuations. Note that the error bars denote the average
of the errors in the fluctuations of each individual � angle.

025105-3 Backbone and side-chain ordering J. Chem. Phys. 128, 025105 �2008�



i.e., just when those angles are ordering; however, upon low-
ering the temperature, the correlations switch to anti-
correlations and increase in magnitude.

Note that all correlated fluctuations of these side chains
exhibit their steepest change below 350 K, where Fig. 3 and
its inset indicate the folding transition into the native back-
bone topology. On the other hand, this is the regime where
angle fluctuations have subsided already. Hence, for HP-36,
the correct ordering of the side chains seems to predate ter-
tiary structure formation. These results also indicate that the
final arrangement of the side chains occurs collectively.

The above results indicate the following sequence of
events in the folding of villin headpiece subdomain HP-36
upon lowering the temperature. The first stage is the forma-
tion of helical segments, connected with a large gain in po-
tential energy. Below this helix-coil transition is a large in-
termediate temperature range where various helical
configurations other than the native one dominate for en-
tropic reasons. This temperature range is also characterized
by an increased side-chain ordering that is more pronounced
for side chains of residues in the interior that arrange them-
selves in coordinated way. The heterogeneity of the sequence
seems to destroy the phase transition–like character of side-
chain ordering that was observed by us for some homopoly-
mers. Instead, the ordering is more gradual. Only at tempera-
tures below side-chain ordering, and connected with a much

smaller gain in energy than at the helix-coil transition, do the
helical segments arrange themselves in nativelike structures.

Our results show a particular thermal order of the fold-
ing processes. It is natural to assume that this thermal order
reflects a related temporal order of folding events. Hence, we
conjecture that HP-36 folds in multistep process where side-
chain and backbone ordering are interconnected. The initial
step is the formation of helical segments. In a second step,
the protein collapses into more compact structures before it
assumes its native state. This sequence of events is consistent
with various computational38–40 and experimental41 studies
that also identify the formation of helical segments as the
time limiting factor in the folding of HP-36. New is our
observation that the search for the correct structure seems to
be facilitated by the ordering of side chains subsequent to
secondary structure formation. This scenario is also consis-
tent with recent mutagenesis experiments �relying on nano-
second laser T-jump measurements� that emphasize the im-
portance of buried side chains for the rather short folding
times of the villin headpiece.41,42

IV. SUMMARY AND OUTLOOK

Choosing a well-studied small protein, the villin head-
piece subdomain HP-36, we have presented methods that
allow us to simulate and analyze ordering processes taking
place on the level of the side-chain dihedral angles as well as
at the level of the backbone structures. Our results indicate a
thermal hierarchy of ordering events with side-chain order-
ing appearing at temperatures below the helix-coil transition
but above the folding transition. We believe that the observed
thermal hierarchy of folding reflects an underlying temporal
sequence of these ordering processes in actual protein fold-
ing dynamics. We conjecture that the side-chain ordering fa-
cilitates the search for the correct backbone topology. Further
studies along these lines on different proteins will elucidate
how general such a scenario is.
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APPENDIX A: STATISTICAL ANALYSIS
OF DIHEDRAL ANGLES

Correct statistical analysis of dihedral angles is some-
what subtle because of their periodicity modulo 2�. This
property excludes the use of regular statistical measures such
as the mean angle 	

 or its variance 	�
− 	

�2
. The reason
is that the numerical values of those quantities depend on the
reference frame chosen, e.g., �−� ,��, �0,2��, or any other
interval of length 2�. Moreover, choosing an inappropriate
reference frame can lead, e.g., to the spurious appearance of
a bimodal distributions from an underlying unimodal one.

On the other hand, there exist the well-established math-
ematical fields of circular or directional statistics43–45 that
deal with such problems. However, we believe that some of
the quantities and equations used there introduce unneces-
sary complications and do not fully reflect the underlying
physical concepts. So here, we will borrow some ideas from

FIG. 5. �Color online� Averaged fluctuations �Eq. �A6�� of �1 for Phe7,
Phe11, and Phe18.

FIG. 6. �Color online� Correlations �Eq. �A8��, based on Eqs. �A11� and
�A12�, of �1 fluctuations between Phe7 and Phe11, Phe7 and Phe18, and
Phe11 and Phe18, respectively; see also the discussion in the Appendix.
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that field, but we will not fully follow that approach.
The important fundamental idea introduced in circular

and directional statistics is that an angle 
 can be viewed as
a two-dimensional vector of unit length

a = �cos�
�
sin�
�

� , �A1�

a concept that bears some similarity to, e.g., a spin in an XY
model46 treated in statistical physics. Consequently, we are
interested in the mean direction ā, also considered to be a
unit vector. It can be determined from the averaged vector

	a
 = �	cos�
�

	sin�
�


� , �A2�

which is usually smaller than a unit vector,

R2�
� = 	cos�
�
2 + 	sin�
�
2  1, �A3�

by

ā =
1

R�
�
	a
 . �A4�

From this mean direction vector, a corresponding mean angle

̄ could be determined in an appropriate frame,

ā � �cos�
̄�
sin�
̄�

� . �A5�

Notice that—as we will see below—most often, it is not
necessary to determine that angle. Rather, it is sufficient to
work with either the mean vector 	a
 �Eq. �A2�� or the mean
direction vector ā �Eq. �A4��.

In this contribution, we concentrate mostly on fluctua-
tions and correlations between dihedral angles. Correlation
analysis, in particular, is a somewhat complex field in the
directional statistics literature, sometimes motivated and
dominated by the fact that the underlying data are temporal
and the goal is the detection of circadian rhythms.43,44 More-
over, the quantities employed for describing fluctuations do
not always match up with those employed for describing
correlations. Below, we sketch the problems and justify our
approach.

The simplest measure for fluctuations is based on the
length of the average vector �Eq. �A3��. The circular vari-
ance is given simply by

V�
� = 1 − R�
� . �A6�

V=0 corresponds to vanishing fluctuations, while V=1 de-
scribes the case of an equidistribution of angles over the full
range, i.e., maximal fluctuations. Interestingly, the circular
variance can be derived, too, by considering the deviation
vectors from the mean direction, i.e.,

V�
� = 1
2 	a − ā2
 = 1

2 �	a2
 − 2	a
 · ā + ā2� = 1 − R�
� .

�A7�

Ideally, in order to systematically analyze correlations
and fluctuations together, a covariance function C�
i ,
 j� is

necessary that generalizes the fluctuation measure employed.
Combining the chosen covariance and fluctuation functions,
the correlation matrix is finally given by

��
i,
 j� =
C�
i,
 j�

�V�
i�V�
 j�
. �A8�

�=0 denotes vanishing correlations, either since there are no
fluctuations at all or because the fluctuations are uncorre-
lated. �→ ±1 corresponds to full correlation or anticorrela-
tion of the fluctuations, respectively.

Unfortunately, a straightforward extension from Eqs.
�A6� and �A7�, e.g., defining the covariance function as the
scalar product of the respective deviation vectors from the
mean direction, C�
i ,
 j�� 	�ai−ai�� · �a j −a j��
, is not possible.
This quantity does not vanish if the angles are statistically
independent, as it should for a proper covariance. Instead,
replacing the deviations from the mean direction by the de-
viations from the mean vector does result in a seemingly
proper covariance function,

Cdiff�
i,
 j� = 	�ai − 	ai
� · �a j − 	a j
�
 . �A9�

The related variance function differs from Eq. �A6� though,

Vdiff�
� = 	a − 	a
2
 = 	a2
 − 	a
2 = 1 − �	cos�
�
2

+ 	sin�
�
2� = 1 − R2�
� . �A10�

Both forms, V�
� and Vdiff�
�, are related by a monotonic—
albeit nonlinear—mapping and describe fluctuations in a
qualitatively similar way. The only quantitative difference is
that Eq. �A10� better resolves the small fluctuation regime,
while Eq. �A6� does that with the regime of large fluctua-
tions.

While we do not consider the changed variance to be a
problem, there is one with Eq. �A9�. Although Cdiff�
i ,
 j�
exhibits the correct behavior in the limit of statistical inde-
pendence of the angles, we have observed that problems
arise in the regime of larger correlations. This is due to the
fact that 	ai
� 	a j
 usually holds, which leads to an imbal-
ance in the treatment of the respective deviation vectors.

The authors of Ref. 45 suggest to describe correlations
between angles by the covariance function

Csin�
i,
 j� = 	sin�
i − 
i��sin�
 j − 
 j��
 . �A11�

This function also exhibits the correct behavior for indepen-
dently distributed angles, and—again—the related variance
function differs from Eq. �A6�,

Vsin�
� = 	sin2�
 − 
̄�
 . �A12�

Notice that this measure of fluctuations necessarily includes
higher order moments of the angular trigonometric functions
than those Eqs. �A6� and �A10� use. Consequently, there
does not exist a simple analytic mapping to the circular vari-
ance, and—particularly for large fluctuations—a nonmono-
tonic relationship is possible.47

We note that, as mentioned above, it is actually not nec-
essary to determine the average angle 
̄ explicitly for evalu-
ating Eq. �A11�. Rather, this equation also has a vector rep-
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resentation, albeit by using the cross product of vectors in
addition to the scalar product. Extending a to a three-
dimensional vector via

â = �cos�
�
sin�
�

0
� , �A13�

and using trigonometric identities, it can be easily seen that
the sine of the angle difference is given by the z component
of the cross product �−â� â�. Consequently, the covariance
�A11� can be represented as

Csin�
i,
 j� = 	�âi � âi� · �â j � â j�
 . �A14�

Analogously, the corresponding fluctuations are repre-
sented via

Vsin�
� = 	â � â2
 . �A15�

As outlined above, we would have preferred to system-
atically analyze fluctuations and correlations together, either
using Eqs. �A10� and �A9� or �A12� and �A11�. However, the
problems with the covariance �Eq. �A9��—imbalance in the
large correlation regime—and the variance �Eq. �A12��—
nonmonotonicity in the large fluctuations regime—do not al-
low this.

Rather, we decided to employ a hybrid approach: When
dealing with fluctuations we always rely on the circular vari-
ance �Eq. �A6�� since it is the simplest reliable approach.
When dealing with correlations, we use the covariance
Csin�
i ,
 j� �Eq. �A11��. Necessarily, we have to employ the
problematic variance Vsin�
� �Eq. �A12�� as normalization in
determining the correlation function ��
i ,
 j� �Eq. �A8��.
Since in our case, correlations arise only in the regime where
fluctuations are small, we feel that this is an acceptable ap-
proach. It also outweighs the problems that arise from using
Eq. �A9�. We emphasize in closing that—to our
knowledge—no satisfying approach exists yet to treat strong
dihedral angle correlations in the large fluctuations regime.
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